Respuesta :

Answer:

The equation of line passing through points (1 , 0) is  x - 5 y - 1 = 0    

Step-by-step explanation:

Given equation of line as

x + 5 y = 30

Now, equation of line in standard form is y = m x + c

where m is the slope

So,  x + 5 y = 30

Or, 5 y = - x + 30

Or, y = - [tex]\frac{1}{5}[/tex] x + 6

So, Slope of this line m = - [tex]\frac{1}{5}[/tex]

Again , let the slope of other line passing through point (1 , 0) is M

And Both lines are perpendicular , So , products of line = - 1

i.e m × M = - 1

Or, M = - [tex]\frac{1}{m}[/tex]

Or, M = - 1 × - [tex]\frac{1}{\frac{1}{5}}[/tex] =  [tex]\frac{1}{5}[/tex]

So, equation of line with slope M and points (1, 0) is

y - [tex]y_1[/tex] = M × (x - [tex]x_1[/tex])

Or, y - ( 0 ) =  [tex]\frac{1}{5}[/tex] × ( x - 1 )

Or, y  =  [tex]\frac{1}{5}[/tex] x - [tex]\frac{1}{5}[/tex] × 1

Or, y  =   [tex]\frac{1}{5}[/tex] x - [tex]\frac{1}{5}[/tex]

or, y + [tex]\frac{1}{5}[/tex] =   [tex]\frac{1}{5}[/tex] x

Or, 5×y + 1  =   x

∴ 5 y + 1 =  x

I.e  x - 5 y - 1 = 0

Hence The equation of line passing through points (1 , 0) is  x - 5 y - 1 = 0   Answer

ACCESS MORE