Respuesta :
Answer:
The speed of its center of mass =[tex]\sqrt{\frac{3}{2}gL}[/tex]
Explanation:
Consider the potential energy at the level of center of mass of rod below the pivot=0
Mass of uniform rod=M
Length of rod=L
The rotational inertia about the end of a uniform rod=[tex]\frac{1}{3}ML^2[/tex]
Kinetic energy at the level of center of mass of rod below the pivot=[tex]\frac{1}{2}I\omega^2[/tex]
Kinetic energy at the level of center of mass of rod above the pivot=0
Potential energy at the level of center of mass of rod above the pivot=mgh
We have to find the center of mass ( in terms of g and L).
According to conservation of law of energy
Initial P.E+Initial K.E=Final P.E+Final K.E
[tex]mgh+0=0+\frac{1}{2} I\omega^2[/tex]
Where [tex]K.E=\frac{1}{2} I\omega^2[/tex]
I=Moment of inertia
[tex]\omega[/tex]=Angular velocity
Substitute the values then we get
[tex]MgL=\frac{1}{2}\times \frac{1}{3}ML^2\omega^2[/tex]
[tex]\omega^2=\frac{6g}{L}[/tex]
Now, we know that [tex]\omega=\frac{v}{r}[/tex], [tex]r=\frac{L}{2}[/tex]
Substitute the values then we get
[tex]\frac{v^2}{(\frac{L}{2})^2}=\frac{6g}{L}[/tex]
[tex]\frac{v^24}{L^2}=\frac{6g}{L}[/tex]
[tex]v^2=\frac{6g\times L^2}{4L}[/tex]
[tex]v^2=\frac{3gL}{2}[/tex]
[tex]v=\sqrt{\frac{3}{2}gL}[/tex]
Hence, the speed of its center of mass =[tex]\sqrt{\frac{3}{2}gL}[/tex]
The speed of the center mass of the rod is ¹/₂√(6gL).
Rotational inertia about the end of a uniform rod
The rotational inertia about the end of a uniform rod is given as;
I = ¹/₃ML²
Kinetic energy of the center mass
The kinetic energy at the level of center of mass of rod below the pivot is given by;
K.E = ¹/₂Iω²
Conservation of energy
The speed of the center mass of the rod can be determined by applying the principle of conservation of mechanical energy as shown below;
P.E = K.E
MgL = ¹/₂Iω²
Substitute the vaue of "I"
MgL = ¹/₂ x ¹/₃ML² x ω²
g = ¹/₆Lω²
ω² = 6g/L
[tex](\frac{v}{r} )^2 = \frac{6g}{L} \\\\(\frac{v}{L/2} )^2 = \frac{6g}{L} \\\\\frac{v^2}{L^2/4} = \frac{6g}{L} \\\\\frac{4v^2}{L^2} = \frac{6g}{L} \\\\v^2 = \frac{6gL^2}{4L} \\\\v = \sqrt{\frac{6gL}{4} } \\\\v = \frac{1}{2} \sqrt{6gL}[/tex]
Thus, the speed of the center mass of the rod is ¹/₂√(6gL).
Learn more about rotational inertia here: https://brainly.com/question/14001220