Explanation:
It is given that,
Mass of an object, [tex]m=4\times 10^5\ kg[/tex]
(a) Time period of oscillation, T = 2.4 s
The formula for the time period of spring is given by :
[tex]T=2\pi \sqrt{\dfrac{m}{k}}[/tex]
Where
k is the force constant
[tex]k=\dfrac{4\pi ^2 m}{T^2}[/tex]
[tex]k=\dfrac{4\pi ^2 \times 4\times 10^5}{(2.4)^2}[/tex]
[tex]k=2.74\times 10^6\ N/m[/tex]
(b) Displacement in the spring, x = 2.2 m
Energy stored in the spring is given by :
[tex]U=\dfrac{1}{2}kx^2[/tex]
[tex]U=\dfrac{1}{2}\times 2.74\times 10^6\ N/m\times (2.2\ m)^2[/tex]
[tex]U=6.63\times 10^6\ J[/tex]
Hence, this is the required solution.