Answer:7.96 min
Explanation:
Given
time taken by water to cool from [tex]90^{\circ}C[/tex] to [tex]85^{\circ}C[/tex] is 1 min
Ambient Temperature [tex]T_{\infty }=30^{\circ}C[/tex]
According to Newtons law of cooling
[tex]\frac{T-T_{\infty }}{T_i-T_{\infty }}=e^{-kt}[/tex]
where T=Final Temperature
[tex]T_i[/tex]=Initial Temperature
k=time constant
t=time
[tex]\frac{85-30}{90-30}=e^2{-k\cdot 1}[/tex]
[tex]\frac{11}{12}=e^{-k}[/tex]
[tex]k=0.08701[/tex]
Time taken to cool to [tex]60^{\circ}C[/tex]
[tex]\frac{60-30}{90-30}=e^{-kt}[/tex]
[tex]\frac{1}{2}=e^{-kt}[/tex]
taking Log
[tex]\ln 0.5=-kt[/tex]
[tex]t=\frac{0.6931}{0.08701}[/tex]
[tex]t=7.96 min[/tex]