contestada

The temperature of a pan of hot water varies according to Newton's Law of Cooling: dT dt equals negative k times the quantity T minus A , where T is the water temperature, A is the room temperature, and k is a positive constant. If the water cools from 90°C to 85°C in 1 minute at a room temperature of 30°C, how long (to the nearest minute) will it take the water to cool to 60°C?

Respuesta :

Answer:7.96 min

Explanation:

Given

time taken by water to cool from [tex]90^{\circ}C[/tex] to [tex]85^{\circ}C[/tex] is 1 min

Ambient Temperature [tex]T_{\infty }=30^{\circ}C[/tex]

According to Newtons law of cooling

[tex]\frac{T-T_{\infty }}{T_i-T_{\infty }}=e^{-kt}[/tex]

where T=Final Temperature

[tex]T_i[/tex]=Initial Temperature

k=time constant

t=time

[tex]\frac{85-30}{90-30}=e^2{-k\cdot 1}[/tex]

[tex]\frac{11}{12}=e^{-k}[/tex]

[tex]k=0.08701[/tex]

Time taken to cool to [tex]60^{\circ}C[/tex]

[tex]\frac{60-30}{90-30}=e^{-kt}[/tex]

[tex]\frac{1}{2}=e^{-kt}[/tex]

taking Log

[tex]\ln 0.5=-kt[/tex]

[tex]t=\frac{0.6931}{0.08701}[/tex]

[tex]t=7.96 min[/tex]

ACCESS MORE