Respuesta :
Answer : The percent yield of [tex]CO_2[/tex] is, 68.4 %
Solution : Given,
Mass of [tex]CH_4[/tex] = 0.16 g
Mass of [tex]O_2[/tex] = 0.84 g
Molar mass of [tex]CH_4[/tex] = 16 g/mole
Molar mass of [tex]O_2[/tex] = 32 g/mole
Molar mass of [tex]CO_2[/tex] = 44 g/mole
First we have to calculate the moles of [tex]CH_4[/tex] and [tex]O_2[/tex].
[tex]\text{ Moles of }CH_4=\frac{\text{ Mass of }CH_4}{\text{ Molar mass of }CH_4}=\frac{0.16g}{16g/mole}=0.01moles[/tex]
[tex]\text{ Moles of }O_2=\frac{\text{ Mass of }O_2}{\text{ Molar mass of }O_2}=\frac{0.84g}{32g/mole}=0.026moles[/tex]
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
[tex]CH_4+2O_2\rightarrow CO_2+2H_2O[/tex]
From the balanced reaction we conclude that
As, 2 mole of [tex]O_2[/tex] react with 1 mole of [tex]CH_4[/tex]
So, 0.026 moles of [tex]O_2[/tex] react with [tex]\frac{0.026}{2}=0.013[/tex] moles of [tex]CH_4[/tex]
From this we conclude that, [tex]CH_4[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]O_2[/tex] is a limiting reagent and it limits the formation of product.
Now we have to calculate the moles of [tex]CO_2[/tex]
From the reaction, we conclude that
As, 2 mole of [tex]O_2[/tex] react to give 1 mole of [tex]CO_2[/tex]
So, 0.026 moles of [tex]O_2[/tex] react to give [tex]\frac{0.026}{2}=0.013[/tex] moles of [tex]CO_2[/tex]
Now we have to calculate the mass of [tex]CO_2[/tex]
[tex]\text{ Mass of }CO_2=\text{ Moles of }CO_2\times \text{ Molar mass of }CO_2[/tex]
[tex]\text{ Mass of }CO_2=(0.013moles)\times (44g/mole)=0.572g[/tex]
Theoretical yield of [tex]CO_2[/tex] = 0.572 g
Experimental yield of [tex]CO_2[/tex] = 0.391 g
Now we have to calculate the percent yield of [tex]CO_2[/tex]
[tex]\% \text{ yield of }CO_2=\frac{\text{ Experimental yield of }CO_2}{\text{ Theretical yield of }CO_2}\times 100[/tex]
[tex]\% \text{ yield of }CO_2=\frac{0.391g}{0.572g}\times 100=68.4\%[/tex]
Therefore, the percent yield of [tex]CO_2[/tex] is, 68.4 %