Answer:
v = 6.93 m/s
Explanation:
given,
spring constant = k = 400 N/m
compression of spring = 6 cm = 0.06 m
mass of ball = 0.03 Kg
length of barrel = 6 cm
using energy conservation
KE of ball = PE of spring
[tex]\dfrac{1}{2}mv^2 =\dfrac{1}{2}kx^2[/tex]
[tex]mv^2 = kx^2[/tex]
[tex]v = \sqrt{\dfrac{kx^2}{m}}[/tex]
[tex]v = \sqrt{\dfrac{400\times 0.06^2}{0.03}}[/tex]
[tex]v = \sqrt{48}[/tex]
v = 6.93 m/s
hence, the speed at which ball leaves the barrel will be equal to v = 6.93 m/s