Answer:
-1.44707 rad/s²
Explanation:
[tex]\omega_f[/tex] = Final angular velocity
[tex]\omega_i[/tex] = Initial angular velocity = 355 rpm
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Angle of rotation = 76 rps
Converting rpm to rad/s
[tex]1\ rpm=\frac{2\pi}{60}\ rad/s[/tex]
Converting rps to rad/s
[tex]1\ rps=2\pi \ rad/s[/tex]
Equation of rotational motion
[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \alpha=\frac{\omega_f^2-\omega_i^2}{2\theta}\\\Rightarrow \alpha=\frac{0^2-355\times \frac{2\pi}{60}^2}{2\times 2\pi \times 76}\\\Rightarrow \alpha=-1.44707\ rad/s^2[/tex]
The constant angular acceleration of the potter's wheel during this interval is -1.44707 rad/s²