Respuesta :
Answer : The partial pressure of [tex]C_2HBrClF_3[/tex] and [tex]O_2[/tex] are, 84 torr and 778 torr respectively.
Explanation : Given,
Mass of [tex]C_2HBrClF_3[/tex] = 15.0 g
Mass of [tex]O_2[/tex] = 22.6 g
Molar mass of [tex]C_2HBrClF_3[/tex] = 197.4 g/mole
Molar mass of [tex]O_2[/tex] = 32 g/mole
First we have to calculate the moles of [tex]C_2HBrClF_3[/tex] and [tex]O_2[/tex].
[tex]\text{Moles of }C_2HBrClF_3=\frac{\text{Mass of }C_2HBrClF_3}{\text{Molar mass of }C_2HBrClF_3}=\frac{15.0g}{197.4g/mole}=0.0759mole[/tex]
and,
[tex]\text{Moles of }O_2=\frac{\text{Mass of }O_2}{\text{Molar mass of }O_2}=\frac{22.6g}{32g/mole}=0.706mole[/tex]
Now we have to calculate the mole fraction of [tex]C_2HBrClF_3[/tex] and [tex]O_2[/tex].
[tex]\text{Mole fraction of }C_2HBrClF_3=\frac{\text{Moles of }C_2HBrClF_3}{\text{Moles of }C_2HBrClF_3+\text{Moles of }O_2}=\frac{0.0759}{0.0759+0.706}=0.0971[/tex]
and,
[tex]\text{Mole fraction of }O_2=\frac{\text{Moles of }O_2}{\text{Moles of }C_2HBrClF_3+\text{Moles of }O_2}=\frac{0.706}{0.0759+0.706}=0.903[/tex]
Now we have to partial pressure of [tex]C_2HBrClF_3[/tex] and [tex]O_2[/tex].
According to the Raoult's law,
[tex]p^o=X\times p_T[/tex]
where,
[tex]p^o[/tex] = partial pressure of gas
[tex]p_T[/tex] = total pressure of gas
[tex]X[/tex] = mole fraction of gas
[tex]p_{C_2HBrClF_3}=X_{C_2HBrClF_3}\times p_T[/tex]
[tex]p_{C_2HBrClF_3}=0.0971\times 862torr=84torr[/tex]
and,
[tex]p_{O_2}=X_{O_2}\times p_T[/tex]
[tex]p_{O_2}=0.903\times 862torr=778torr[/tex]
Therefore, the partial pressure of [tex]C_2HBrClF_3[/tex] and [tex]O_2[/tex] are, 84 torr and 778 torr respectively.