Answer:
The answers are: a) T= 7278.2 K ; b) K= 4.5 10⁻³¹
Explanation:
The equation which allows the calculation of the Gibbs free energy for a process is the following:
ΔGº= ΔHº - T ΔSº
ΔGº<0 for a spontaneous process, and we have both ΔHº and ΔSº higher than 0 (ΔHº>0 and ΔSº>0) so the process will be spontaneous only at high temperatures. To calculate the temperature above which the process will be spontaneous we replace ΔGº=0 in the equation:
ΔGº= ΔHº - T ΔSº
0= ΔHº - T ΔSº
⇒ T= ΔHº/ΔSº
T= 180.5 KJ/mol/24.80 J/K.mol
T= 180.5 KJ/mol/0.0248 KJ/K.mol
T= 7278.2 K
In part B, to calculate the equilibrium constant we first have to calculate the variation of Gibbs free energy at this temperature (25ºC= 298 K):
ΔGº= ΔHº - T ΔSº
ΔGº= 180.5 KJ/mol - ((298 K)x(0.0248 KJ/K.mol)
ΔGº= 173.1 KJ/mol
With this, we can calculate K (equilibrium constant) at room temperature by using the known values of ΔHº, ΔSº and ΔGº:
ΔGº= - RT ln K
⇒ln K= ΔGº/-RT
ln K= 173100 J/mol/-(8.314 J/K.mol x 298 K)
K= [tex]e^{-69.86}[/tex]
K= 4.5 10⁻³¹