Answer:
4096 is the simplified form of [tex]\left(2^{3}\right)^{4}[/tex]
Option: B
Step-by-step explanation:
Given that [tex]\left(2^{3}\right)^{4}[/tex]
[tex]2^{3}[/tex] represents 2 to the power 3 that means the number appears three times in multiplying.
[tex]2^{3}=(2 \times 2 \times 2)[/tex]
[tex]2^{3}=(2 \times 2 \times 2)[/tex]
[tex]2^{3}=(4 \times 2)[/tex]
[tex]2^{3}=8[/tex]
[tex]\left(2^{3}\right)^{4}[/tex] represents 2³ to the power 4 means the number 4 appears four times in multiplying.
[tex]\left(2^{3}\right)^{4}=8 \times 8 \times 8 \times 8[/tex]
[tex]\left(2^{3}\right)^{4}=64 \times 8 \times 8[/tex]
[tex]\left(2^{3}\right)^{4}=512 \times 8[/tex]
[tex]\left(2^{3}\right)^{4}=4096[/tex]
Hence the simplified form of [tex]\left(2^{3}\right)^{4}[/tex] is 4096.