Respuesta :
Answer:
angular momentum = 51.55 kg -m^2/s
rotational kinetic energy 3237.89 j
Explanation:
Given data;
radius = 0.03 m
length 0.7 m
mass is 4 kg
moment of inertia is given [tex]= \frac{1}{12} m (3r^2 + h^2)[/tex]
[tex] I = \frac{1}{12} 10(3\times 0.03^2 + 0.7^2) = 0.4105 kg -m^2[/tex]
Angular speed[tex] - \frac{2 \pi}{0.05} = 125.6 rad/s[/tex]
Angular momentum [tex]= 125.6 \times 0.4105 = 51.55 kg- m^2/s[/tex]
Rotational kinetic energy [tex]= 0.5 \times 0.4105 \times 125.6^2 = 3237.89 j[/tex]
The angular momentum of the rod is 51.5 kgm²/s and its rotational kinetic energy is 3234 J.
Given information:
Length of the cylindrical rod, l = 0.7 m
radius of the cylindrical rod, r = 0.3 m
time period of revolution, T = 0.05s
mass of the rod, m = 4kg
Rotational motion:
From the time period we can calculate the angular speed (ω) of the rod:
[tex]T =\frac{2\pi}{\omega}\\\\\omega=\frac{2\pi}{T}\\\\\omega= \frac{2\pi}{0.05} \\\\\omega=125.6\;rad/s[/tex]
The moment of inertia of the cylindrical rod is given by:
[tex]I = \frac{1}{12}[3r^3+l^2]\\\\I = \frac{1}{12}[3(0.3)^3+(0.7)^2]\\\\I=0.41\;kgm^2[/tex]
So the angular momentum :
[tex]L =I\omega\\\\L=0.41\times125.6\\\\L=51.5\;kgm^2/s[/tex]
The rotational kinetic energy of the rod:
[tex]KE=\frac{1}{2}I\omega^2\\\\KE= \frac{1}{2}0.41\times(125.6)^2\\\\KE=3234\;J[/tex]
learn more about rotational motion:
https://brainly.com/question/18807782?referrer=searchResults