Answer:
The [tex]K_{eq}[/tex] of the reaction is [tex]3.002\times 10^{-36}[/tex].
Explanation:
[tex]2Ag (s)+Ni^{2+}(aq)\rightarrow 2Ag^+(aq)+Ni(s)[/tex]
Reduction at cathode :
[tex]Ni^{2+}(aq)+2e^-\rightarrow Ni(s)[/tex]
Reduction potential of [tex]Ni^{2+}[/tex] to Ni=[tex]E^o_{1}=-0.25 V[/tex]
Oxidation at anode:
[tex]2Ag(s)\rightarrow Ag^{+}(aq)+e^-[/tex]
Reduction potential of [tex]Ag^{+}[/tex] to Ag=[tex]E^o_{2}=0.80 V[/tex]
To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:
[tex]E^o_{cell}=E^o_{red,cathode}-E^o_{red,anode}[/tex]
Putting values in above equation, we get:
[tex]E^o_{cell}=-0.25 V-0.80 V =-1.05 V[/tex]
To calculate equilibrium constant, we use the relation between Gibbs free energy, which is:
[tex]\Delta G^o=-nfE^o_{cell}[/tex]
and,
[tex]\Delta G^o=-RT\ln K_{eq}[/tex]
Equating these two equations, we get:
[tex]nfE^o_{cell}=RT\ln K_{eq}[/tex]
where,
n = number of electrons transferred = 2
F = Faraday's constant = 96500 C
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = -1.05 V
R = Gas constant = 8.314 J/K.mol
T = temperature of the reaction = [tex]25^oC=[273+25]=298K[/tex]
[tex]K_{eq}[/tex] = equilibrium constant of the reaction = ?
Putting values in above equation, we get:
[tex]2\times 96500\times (-1.05 V)=8.314\times 298\times \ln K_{eq}\\\\K_{eq}=3.002\times 10^{-36}[/tex]
Hence, the [tex]K_{eq}[/tex] of the reaction is [tex]3.002\times 10^{-36}[/tex]