What is the value of the equilibrium constant at 25 oC for the reaction between the pair: Ag(s) and Ni2+(aq) to give Ni(s) and Ag+(aq) Use the reduction potential values for Ag+(aq) of +0.80 V and for Ni2+(aq) of -0.25 V Give your answer using E-notation with NO decimal places (e.g., 2 x 10-2 would be 2E-2; and 2.12 x 10-2 would also be 2E-2.). Do NOT include spaces, units, punctuation or anything else silly!

Respuesta :

Answer:

The [tex]K_{eq}[/tex] of the reaction is [tex]3.002\times 10^{-36}[/tex].

Explanation:

[tex]2Ag (s)+Ni^{2+}(aq)\rightarrow  2Ag^+(aq)+Ni(s)[/tex]

Reduction at cathode :

[tex]Ni^{2+}(aq)+2e^-\rightarrow Ni(s)[/tex]

Reduction potential of  [tex]Ni^{2+}[/tex] to Ni=[tex]E^o_{1}=-0.25 V[/tex]

Oxidation at anode:

[tex]2Ag(s)\rightarrow Ag^{+}(aq)+e^-[/tex]

Reduction potential of  [tex]Ag^{+}[/tex] to Ag=[tex]E^o_{2}=0.80 V[/tex]

To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:

[tex]E^o_{cell}=E^o_{red,cathode}-E^o_{red,anode}[/tex]

Putting values in above equation, we get:

[tex]E^o_{cell}=-0.25 V-0.80 V =-1.05 V[/tex]

To calculate equilibrium constant, we use the relation between Gibbs free energy, which is:

[tex]\Delta G^o=-nfE^o_{cell}[/tex]

and,

[tex]\Delta G^o=-RT\ln K_{eq}[/tex]

Equating these two equations, we get:

[tex]nfE^o_{cell}=RT\ln K_{eq}[/tex]

where,

n = number of electrons transferred = 2

F = Faraday's constant = 96500 C

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = -1.05 V

R = Gas constant = 8.314 J/K.mol

T = temperature of the reaction = [tex]25^oC=[273+25]=298K[/tex]

[tex]K_{eq}[/tex] = equilibrium constant of the reaction = ?

Putting values in above equation, we get:

[tex]2\times 96500\times (-1.05 V)=8.314\times 298\times \ln K_{eq}\\\\K_{eq}=3.002\times 10^{-36}[/tex]

Hence, the [tex]K_{eq}[/tex] of the reaction is [tex]3.002\times 10^{-36}[/tex]

ACCESS MORE