Respuesta :

Answer:

The distance of point ( 6 , 2 ) from line  6 x - y = 3 is  [tex]\frac{31}{\sqrt{37} }[/tex]  unit .

Step-by-step explanation:

Given as :

The equation of line is 6 x - y = 3

And The points is ( 6 , 2 )

Let The distance between the line and points is d unit

So, The distance of point from the line = [tex]\frac{\begin{vmatrix}ax & +b y & + c\end{vmatrix}}{\sqrt{a^{2}+b^{2}}}[/tex]

Or, d = [tex]\frac{\begin{vmatrix}6\times x & +(-1)\times  y & + (-3)\end{vmatrix}}{\sqrt{6^{2}+(-1)^{2}}}[/tex]

Or, d =  [tex]\frac{\begin{vmatrix}6\times 6 & +(-1)\times  2 & + (-3)\end{vmatrix}}{\sqrt{6^{2}+(-1)^{2}}}[/tex]

Or, d = [tex]\frac{36 - 2 - 3}{\sqrt{37} }[/tex]

∴    d = [tex]\frac{31}{\sqrt{37} }[/tex]  unit

Hence The distance of point ( 6 , 2 ) from line  6 x - y = 3 is  [tex]\frac{31}{\sqrt{37} }[/tex]  unit .   Answer

Answer:

Using the distance formula, you can solve to show that the distance between  6x-y= 3  = 37/ sqrt 37, or  sqrt 37

Step-by-step explanation:

ACCESS MORE