Answer:[tex]P=14.6 W[/tex]
Explanation:
According to the Stefan-Boltzmann law for real radiating bodies:
[tex]P=\sigma A \epsilon T^{4}[/tex] (1)
Where:
[tex]P[/tex] is the energy radiated (in Watts)
[tex]\sigma=5.67(10)^{-8}\frac{W}{m^{2} K^{4}}[/tex] is the Stefan-Boltzmann's constant.
[tex]A[/tex] is the Surface area of the body
[tex]T=30\°C + 273.15= 303.15 K[/tex] is the effective temperature of the body (its surface absolute temperature) in Kelvin
[tex]\epsilon=0.6[/tex] is the body's emissivity
On the other hand, we are told the human body is roughly approximated to a cylinder of length [tex]L=2.0m[/tex] and circumference [tex]C=0.8m[/tex].
The circumference of a circle is:[tex]C=0.8m=2 \pi r[/tex] where [tex]r[/tex] is the radius. Hence [tex]r=\frac{0.8m}{2 \pi}=0.1273 m[/tex].
Now we have to input this value for [tex]r[/tex] in the Area of a cylinder formula:
[tex]A=\pi r^{2}L[/tex]
[tex]A=\pi (0.1273 m)^{2}(2 m)[/tex]
[tex]A=0.0509 m^{2}[/tex] (2)
Substituting (2) in (1):
[tex]P=(5.67(10)^{-8}\frac{W}{m^{2} K^{4}}) (0.0509 m^{2}) (0.6) (303.15 K)^{4}[/tex] (3)
Finally:
[tex]P=14.62 W \approx 14.6 W[/tex]