Respuesta :
Answer:
[tex]4log_w (x^2-6)-\frac{1}{3}log_w (x^2+8)[/tex]
Step-by-step explanation:
The expression to simplify is given as:
[tex]L= log_w \frac{(x^2-6)^4}{\sqrt[3]{x^2+8} }[/tex]
Using the log property [tex]log_a \frac{x}{y}=log_a x-log_a y[/tex], we get
[tex]L=\log_w (x^2-6)^4- \log_w \sqrt[3]{(x^2+8)}[/tex]
Now, we know that [tex]\sqrt[3]{x} =(x)^{\frac{1}{3}}[/tex].So,
[tex]\sqrt[3]{(x^2+8)}=(x^2+8)^{\frac{1}{3}}[/tex]
Also, property of log is [tex]\log_a x^m=mlog_a x[/tex]
Using the above properties, we get
[tex]L=\4\log_w (x^2-6)- \frac{1}{3}\log_w (x^2+8)[/tex]
Hence, the given expression is equivalent to [tex] \4\log_w (x^2-6)- \frac{1}{3}\log_w (x^2+8)[/tex]