Respuesta :
Answer : The change in entropy for the gas is -61.52 J/K
Explanation :
Formula used :
[tex]\Delta S=nC_v\ln (\frac{T_2}{T_1})+nR\ln (\frac{V_2}{V_1})[/tex]
where,
[tex]\Delta S[/tex] = change in entropy = ?
n = number of moles of gas = 4.45 mole
R = gas constant = 8.314 J/mol.K
[tex]V_1[/tex] = initial volume of gas = 7.60 L
[tex]V_2[/tex] = final volume of gas = 1.70 L
[tex]T_1[/tex] = initial temperature of gas = 335 K
[tex]T_2[/tex] = final temperature of gas = [tex]3.00\times 10^2K[/tex]
[tex]C_v[/tex] = molar heat capacity for neon gas = 12.47 J/mol.K
Now put all the given values in the above formula, we get:
[tex]\Delta S=(4.45mol)\times (12.47J/mol.K)\ln (\frac{3.00\times 10^2K}{335K})+(4.45mole)\times (8.314J/mol.K)\ln (\frac{1.70L}{7.60L})[/tex]
[tex]\Delta S=-61.52J/K[/tex]
Therefore, the change in entropy for the gas is -61.52 J/K
The change in entropy for the neon gas is - 61.53 J/K.
The given parameters;
- number of moles of the given gas, n = 4.45 moles
- initial volume of the gas, V₁ = 7.6 L
- final volume of the gas, V₂ = 1.7 L
- initial temperature of the gas, T₁ = 335 K
- final temperature of the gas, T₂ = 300 K
- molar heat capacity of the gas, Cv = 12.47 J/(mol·K)
The change in entropy for the neon gas is calculated as follows;
[tex]\Delta S = nRln(\frac{V_2}{V_1} ) \ + \ nC_v ln (\frac{T_2}{T_1})\\\\[/tex]
where;
- R is the ideal gas constant = 8.314 J/mol.K
Substitute the given parameters and solve for the entropy change;
[tex]\Delta S = (4.45)(8.314)ln (\frac{1.7}{7.6} ) \ + \ (4.45)(12.47) ln (\frac{300}{335} )\\\\\Delta S = -61.53 \ J/K[/tex]
Thus, the change in entropy for the neon gas is - 61.53 J/K.
Learn more here:https://brainly.com/question/14116951