Respuesta :
The approximate energy of one photon of this light is ; [tex]4*10^{-9} J[/tex]
Given that :
wavelength of 510nm ≈ frequency of [tex]6*10^{14} s^{-1}[/tex]
Energy of photon ( E ) = hv = [tex]\frac{hc}{\beta }[/tex] ---- ( 1 )
where;
h = Planck's constant = [tex]6.63 * 10^{-34}Js[/tex]
c = [tex]3*10^8 m/s[/tex]
β = light wavelength = [tex]510 * 10^{-9} m[/tex]
v = light frequency
Insert given values into equation ( 1 )
E = [tex]4*10^{-9} J[/tex]
Hence we can conclude that approximate energy of one photon of this light is [tex]4*10^{-9} J[/tex]
Learn more : https://brainly.com/question/20445907
The energy of the photon will be [tex]\rm \bold {E = 4 \times 10^-9 J}[/tex]
The energy of photon,
[tex]\rm \bold{ E = \frac{hc}{\lambda} }[/tex]
where,
h- plank scale = [tex]\rm \bold { 6.63 \times 10^-34 Js}[/tex]
c- [tex]\rm \bold { 3 \times 10^8 m/s}[/tex]
[tex]\rm \bold{ \lambda} }[/tex]- wavelength = 510nm
Put the values in the formula
[tex]\rm \bold {E = 4 \times 10^-9 J}[/tex]
Hence, we can conclude that the energy of the photon will be [tex]\rm \bold {E = 4 \times 10^-9 J}[/tex]
To know more about Photon energy, refer to the link:
https://brainly.com/question/23180082?referrer=searchResults