Answer:
[tex]v_{f}[/tex] = 3289.8 m / s
Explanation:
This exercise can be solved using the definition of momentum
I = ∫ F dt
Let's replace and calculate
I = ∫ (at - bt²) dt
We integrate
I = a t² / 2 - b t³ / 3
We evaluate between the lower limits I=0 for t = 0 s and higher I=I for t = 2.74 ms
I = a (2,74² / 2- 0) - b (2,74³ / 3 -0)
I = a 3,754 - b 6,857
We substitute the values of a and b
I = 1500 3,754 - 20 6,857
I = 5,631 - 137.14
I = 5493.9 N s
Now let's use the relationship between momentum and momentum
I = Δp = m [tex]v_{f}[/tex] - m v₀o
I = m [tex]v_{f}[/tex] - 0
[tex]v_{f}[/tex] = I / m
[tex]v_{f}[/tex] = 5493.9 /1.67
[tex]v_{f}[/tex] = 3289.8 m / s