Respuesta :
Answer:
(a) [tex]\lim_{t \to \infty} \frac{1}{1+ae^{-kt}}=1[/tex]
(b) [tex]\frac{d}{dt}\left(\frac{1}{1+ae^{-kt}}\right)=\frac{ake^{-kt}}{\left(1+ae^{-kt}\right)^2}[/tex]
(c) 80% of the population will have heard the rumor in about 7.4 hrs.
Step-by-step explanation:
We know that a rumor spreads according to the equation
[tex]p(t)=\frac{1}{1+ae^{-kt}}[/tex]
where [tex]p(t)[/tex] is the proportion of the population that knows the rumor at time [tex]t[/tex], and [tex]a[/tex] and [tex]k[/tex] are positive constants.
(a) To find [tex]\lim_{t \to \infty} p(t)[/tex] you must:
Use this fact,
[tex]\lim _{x\to a}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{\lim _{x\to a}f\left(x\right)}{\lim _{x\to a}g\left(x\right)},\:\quad \lim _{x\to a}g\left(x\right)\ne 0[/tex]
[tex]\lim_{t \to \infty} \frac{1}{1+ae^{-kt}}\\\\\frac{\lim _{t\to \infty \:}\left(1\right)}{\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)}[/tex]
Apply this identity, to find [tex]\lim _{t\to \infty \:}\left(1)[/tex]
[tex]\lim _{x\to a}c=c[/tex]
[tex]\lim _{t\to \infty \:}\left(1\right)=1[/tex]
[tex]\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)=\lim _{t\to \infty \:}\left\left(1\right)+\lim _{t\to \infty \:}\left(ae^{-kt}\right)\\\\\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)=1+a\cdot \lim _{t\to \infty \:}\left(e^{-kt}\right)\\\\\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)=1+0[/tex]
[tex]\frac{\lim _{t\to \infty \:}\left(1\right)}{\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)}=\frac{1}{1+0} =1[/tex]
(b) To find the rate of speed of the rumor you must find the derivative [tex]\frac{dp}{dt}[/tex]
[tex]\frac{d}{dt}\left(\frac{1}{1+ae^{-kt}}\right)\\\\\frac{d}{dt}\left(\left(1+ae^{-kt}\right)^{-1}\right)\\\\\mathrm{Apply\:the\:chain\:rule}:\quad \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}\\\\\frac{d}{du}\left(u^{-1}\right)\frac{d}{dt}\left(1+ae^{-kt}\right)\\\\\left(-\frac{1}{u^2}\right)\left(-ake^{-kt}\right)\\\\\mathrm{Substitute\:back}\:u=\left(1+ae^{-kt}\right)\\\\\left(-\frac{1}{\left(1+ae^{-kt}\right)^2}\right)\left(-ake^{-kt}\right)[/tex]
[tex]\frac{d}{dt}\left(\frac{1}{1+ae^{-kt}}\right)=\frac{ake^{-kt}}{\left(1+ae^{-kt}\right)^2}[/tex]
(c) To find the time that will take for 80% of the population to hear the rumor, you must substitute a = 10, k = 0.5, and p(t) = 0.8 into [tex]p(t)=\frac{1}{1+ae^{-kt}}[/tex] and solve for t
[tex]\frac{1}{1+10e^{-0.5t}}=0.8\\\\\frac{1}{1+10e^{-0.5t}}\left(1+10e^{-0.5t}\right)=0.8\left(1+10e^{-0.5t}\right)\\\\1=0.8\left(1+10e^{-0.5t}\right)\\\\0.8\left(1+10e^{-0.5t}\right)=1\\\\0.8\left(1+10e^{-0.5t}\right)\cdot \:10=1\cdot \:10\\\\8\left(1+10e^{-0.5t}\right)=10\\\\\frac{8\left(1+10e^{-0.5t}\right)}{8}=\frac{10}{8}\\\\1+10e^{-0.5t}=\frac{5}{4}\\\\1+10e^{-0.5t}-1=\frac{5}{4}-1\\\\10e^{-0.5t}=\frac{1}{4}\\\\\frac{10e^{-0.5t}}{10}=\frac{\frac{1}{4}}{10}[/tex]
[tex]e^{-0.5t}=\frac{1}{40}\\\\\ln \left(e^{-0.5t}\right)=\ln \left(\frac{1}{40}\right)\\\\-0.5t\ln \left(e\right)=\ln \left(\frac{1}{40}\right)\\\\-0.5t=\ln \left(\frac{1}{40}\right)\\\\t=2\ln \left(40\right) \approx 7.377 \:hrs[/tex]