Answer:
[tex]v_d = 7.6 \times 10^{-5} m/s[/tex]
Explanation:
As we know that electric current is given as
[tex]i = neA v_d[/tex]
here we know that
[tex]A = 2.6 \times 10^{-6} m^2[/tex]
i = 1.9 A
[tex]e = 1.6 \times 10^{-19} C[/tex]
Molar mass of the wire is
M = 26.98 g/mol
density of the wire is
[tex]\rho = 2.7 g/cm^3[/tex]
now let the mass of the wire is M gram
so number of atoms of Al in the wire is given as
[tex]N = \frac{M}{26.98}(6.02 \times 10^{23})[/tex]
now number density is given as
[tex]n = \frac{N}{V}[/tex]
[tex]n = \frac{\rho}{26.98}(6.02 \times 10^{23})[/tex]
[tex]n = 6.02 \times 10^{22} per cm^3[/tex]
[tex]n = 6.02 \times 10^{28} per m^3[/tex]
now we will have
[tex]i = neAv_d[/tex]
[tex]1.9 = (6.02 \times 10^{28})(1.6 \times 10^{-19})(2.6 \times 10^{-6})v_d[/tex]
[tex]v_d = 7.6 \times 10^{-5} m/s[/tex]