A rectangular storage container with an open top is to have a volume of 10 m3 . then length of its base is twice the width. material for the base costs $10 per square meter. material for the sides cost $6 per square meter. find the cost of materials for the cheapest such container.

Respuesta :

Answer:

The cost of materials for the cheapest such container is $163.54.

Step-by-step explanation:

A rectangular storage container with an open top is to have a volume of 10 m³.

The volume of the rectangle is

[tex]\text{Volume} =\text{Length} \times \text{Width} \times \text{Height}[/tex]

Length of its base is twice the width.

Let Width be 'w'.

Length is l=2w.

Height be 'h'.

[tex]10 =2w\times w\times h[/tex]

[tex]10=2w^2h[/tex]

The height in terms of width is represented as,

[tex]h=\frac{10}{2w^2}[/tex]

[tex]h=\frac{5}{w^2}[/tex]

According to question,

The cost is 10 times the area of the base and 6 times the total area of the sides.

i.e. Cost is given by,

[tex]C=10(L\times W)+6(2\times L\times H+2\times W\times H)[/tex]

[tex]C=10(2w\times w)+6(2\times 2w\times \frac{5}{w^2}+2\times w\times \frac{5}{w^2})[/tex]

[tex]C=20w^2+\frac{120}{w}+\frac{60}{w}[/tex]

[tex]C(w)=20w^2+\frac{180}{w}[/tex]

To get the minimum value,

Differentiate the cost w.r.t 'w',

[tex]C'(w)=20\frac{d(w^2)}{dw}+180\frac{d(w^{-1})}{dw}[/tex]

[tex]C'(w)=20\times 2w-180 w^{-2}[/tex]

[tex]C'(w)=40w-\frac{180}{w^2}[/tex]

To find critical points put derivate =0,

[tex]40w-\frac{180}{w^2}=0[/tex]

[tex]40w=\frac{180}{w^2}[/tex]

[tex]w^3=\frac{180}{40}[/tex]

[tex]w=\sqrt[3]{4.5}[/tex]

[tex]w=1.65[/tex]

We find the second derivative to minimize,

[tex]C''(w)=40\frac{d(w)}{dw}-180\frac{d(w^{-2})}{dw}[/tex]

[tex]C''(w)=40+360(w^{-3})[/tex]

[tex]C''(w)>0[/tex]

As [tex]C''(w)>0[/tex] it is the minimum cost.

The cost is minimum at w=1.65.

Substitute the values in the cost function,

[tex]C(1.65)=20(1.65)^2+\frac{180}{1.65}[/tex]

[tex]C(1.65)=54.45+109.09[/tex]

[tex]C(1.65)=163.54[/tex]

Therefore, the cost of materials for the cheapest such container is $163.54.

The volume of a box is the amount of space in it.

The cheapest cost of such container is $163.54

The volume is given as:

[tex]\mathbf{V = 10}[/tex]

The relationship between the dimension is:

[tex]\mathbf{L = 2W}[/tex]

So, the volume is:

[tex]\mathbf{V = LWH}[/tex]

Substitute 2W for L

[tex]\mathbf{V = 2W^2H}[/tex]

Substitute 10 for V

[tex]\mathbf{10 = 2W^2H}[/tex]

Divide both sides by 2

[tex]\mathbf{5 = W^2H}[/tex]

Make H the subject

[tex]\mathbf{H = \frac{5}{W^2}}[/tex]

The surface area is calculated as:

[tex]\mathbf{A = Base + 2 \times Sides_1 + 2 \times Sides_2}[/tex]

The cost function is then calculated as:

[tex]\mathbf{C =10 \times Base +6 \times ( 2 \times Sides_1 + 2 \times Sides_2)}[/tex]

So, we have:

[tex]\mathbf{C =10 \times LW +6 \times (2 \times WH + 2 \times LH)}[/tex]

Substitute [tex]\mathbf{L = 2W}[/tex]

[tex]\mathbf{C =10 \times 2W^2 +6 \times (2 \times WH + 2 \times 2WH)}[/tex]

[tex]\mathbf{C =10 \times 2W^2 +6 \times (2WH + 4WH)}[/tex]

[tex]\mathbf{C =10 \times 2W^2 +6 \times (6WH)}[/tex]

[tex]\mathbf{C =20W^2 +36WH}[/tex]

Substitute [tex]\mathbf{H = \frac{5}{W^2}}[/tex]

[tex]\mathbf{C =20W^2 +36W\times \frac{5}{W^2}}[/tex]

[tex]\mathbf{C =20W^2 + \frac{180}{W}}[/tex]

Differentiate

[tex]\mathbf{C' =40W - \frac{180}{W^2}}[/tex]

Set to 0

[tex]\mathbf{40W - \frac{180}{W^2} = 0}[/tex]

Divide through by W

[tex]\mathbf{40 - \frac{180}{W^3} = 0}[/tex]

Rewrite as:

[tex]\mathbf{\frac{180}{W^3} = 40}[/tex]

Solve for W

[tex]\mathbf{40W^3 = 180}[/tex]

Divide both sides by 40

[tex]\mathbf{W^3 = 4.5}[/tex]

Take cube roots

[tex]\mathbf{W = 1.65}[/tex]

Recall that: [tex]\mathbf{C =20W^2 + \frac{180}{W}}[/tex]

So, we have:

[tex]\mathbf{C = 20 \times 1.65^2 + \frac{180}{1.65^2}}[/tex]

[tex]\mathbf{C = 163.54}[/tex]

Hence, the cheapest cost of such container is $163.54

Read more about volumes at:

https://brainly.com/question/11521236

ACCESS MORE
EDU ACCESS