Respuesta :
Answer:
The cost of materials for the cheapest such container is $163.54.
Step-by-step explanation:
A rectangular storage container with an open top is to have a volume of 10 m³.
The volume of the rectangle is
[tex]\text{Volume} =\text{Length} \times \text{Width} \times \text{Height}[/tex]
Length of its base is twice the width.
Let Width be 'w'.
Length is l=2w.
Height be 'h'.
[tex]10 =2w\times w\times h[/tex]
[tex]10=2w^2h[/tex]
The height in terms of width is represented as,
[tex]h=\frac{10}{2w^2}[/tex]
[tex]h=\frac{5}{w^2}[/tex]
According to question,
The cost is 10 times the area of the base and 6 times the total area of the sides.
i.e. Cost is given by,
[tex]C=10(L\times W)+6(2\times L\times H+2\times W\times H)[/tex]
[tex]C=10(2w\times w)+6(2\times 2w\times \frac{5}{w^2}+2\times w\times \frac{5}{w^2})[/tex]
[tex]C=20w^2+\frac{120}{w}+\frac{60}{w}[/tex]
[tex]C(w)=20w^2+\frac{180}{w}[/tex]
To get the minimum value,
Differentiate the cost w.r.t 'w',
[tex]C'(w)=20\frac{d(w^2)}{dw}+180\frac{d(w^{-1})}{dw}[/tex]
[tex]C'(w)=20\times 2w-180 w^{-2}[/tex]
[tex]C'(w)=40w-\frac{180}{w^2}[/tex]
To find critical points put derivate =0,
[tex]40w-\frac{180}{w^2}=0[/tex]
[tex]40w=\frac{180}{w^2}[/tex]
[tex]w^3=\frac{180}{40}[/tex]
[tex]w=\sqrt[3]{4.5}[/tex]
[tex]w=1.65[/tex]
We find the second derivative to minimize,
[tex]C''(w)=40\frac{d(w)}{dw}-180\frac{d(w^{-2})}{dw}[/tex]
[tex]C''(w)=40+360(w^{-3})[/tex]
[tex]C''(w)>0[/tex]
As [tex]C''(w)>0[/tex] it is the minimum cost.
The cost is minimum at w=1.65.
Substitute the values in the cost function,
[tex]C(1.65)=20(1.65)^2+\frac{180}{1.65}[/tex]
[tex]C(1.65)=54.45+109.09[/tex]
[tex]C(1.65)=163.54[/tex]
Therefore, the cost of materials for the cheapest such container is $163.54.
The volume of a box is the amount of space in it.
The cheapest cost of such container is $163.54
The volume is given as:
[tex]\mathbf{V = 10}[/tex]
The relationship between the dimension is:
[tex]\mathbf{L = 2W}[/tex]
So, the volume is:
[tex]\mathbf{V = LWH}[/tex]
Substitute 2W for L
[tex]\mathbf{V = 2W^2H}[/tex]
Substitute 10 for V
[tex]\mathbf{10 = 2W^2H}[/tex]
Divide both sides by 2
[tex]\mathbf{5 = W^2H}[/tex]
Make H the subject
[tex]\mathbf{H = \frac{5}{W^2}}[/tex]
The surface area is calculated as:
[tex]\mathbf{A = Base + 2 \times Sides_1 + 2 \times Sides_2}[/tex]
The cost function is then calculated as:
[tex]\mathbf{C =10 \times Base +6 \times ( 2 \times Sides_1 + 2 \times Sides_2)}[/tex]
So, we have:
[tex]\mathbf{C =10 \times LW +6 \times (2 \times WH + 2 \times LH)}[/tex]
Substitute [tex]\mathbf{L = 2W}[/tex]
[tex]\mathbf{C =10 \times 2W^2 +6 \times (2 \times WH + 2 \times 2WH)}[/tex]
[tex]\mathbf{C =10 \times 2W^2 +6 \times (2WH + 4WH)}[/tex]
[tex]\mathbf{C =10 \times 2W^2 +6 \times (6WH)}[/tex]
[tex]\mathbf{C =20W^2 +36WH}[/tex]
Substitute [tex]\mathbf{H = \frac{5}{W^2}}[/tex]
[tex]\mathbf{C =20W^2 +36W\times \frac{5}{W^2}}[/tex]
[tex]\mathbf{C =20W^2 + \frac{180}{W}}[/tex]
Differentiate
[tex]\mathbf{C' =40W - \frac{180}{W^2}}[/tex]
Set to 0
[tex]\mathbf{40W - \frac{180}{W^2} = 0}[/tex]
Divide through by W
[tex]\mathbf{40 - \frac{180}{W^3} = 0}[/tex]
Rewrite as:
[tex]\mathbf{\frac{180}{W^3} = 40}[/tex]
Solve for W
[tex]\mathbf{40W^3 = 180}[/tex]
Divide both sides by 40
[tex]\mathbf{W^3 = 4.5}[/tex]
Take cube roots
[tex]\mathbf{W = 1.65}[/tex]
Recall that: [tex]\mathbf{C =20W^2 + \frac{180}{W}}[/tex]
So, we have:
[tex]\mathbf{C = 20 \times 1.65^2 + \frac{180}{1.65^2}}[/tex]
[tex]\mathbf{C = 163.54}[/tex]
Hence, the cheapest cost of such container is $163.54
Read more about volumes at:
https://brainly.com/question/11521236