Respuesta :

Answer:

[tex]\frac{cos(x-y)}{sin(x+y)}=\frac{1+cot(x)cot(y)}{cot(x)+cot(y)}[/tex]

[tex]Left\ side = Right\ side[/tex], hence the identity is verified.

Step-by-step explanation:

[tex]\frac{cos(x-y)}{sin(x+y}=\frac{1+cot(x)cot(y)}{cot(x)+cot(y)}[/tex]

Working on right hand side.

[tex]\frac{1+cot(x)cot(y)}{cot(x)+cot(y)}[/tex]

Substituting [tex][cot(x)=\frac{cos(x)}{sin(x)}][/tex] and [tex][cot(y)=\frac{cos(y)}{sin(y)}][/tex]

[tex]=\frac{1+\frac{cos(x)cos(y)}{sin(x)sin(y)}}{\frac{cos(x)}{sin(x)}+\frac{cos(y)}{sin(y)}}[/tex]

Taking LCD and adding fractions.

[tex]=\frac{\frac{sin(x)sin(y)+cos(x)cos(y)}{sin(x)sin(y)}}{\frac{cos(x)sin(y)+sin(x)cos(y)}{sin(x)sin(y)}}[/tex]

Cancelling out the common denominators.

[tex]=\frac{sin(x)sin(y)+cos(x)cos(y)}{cos(x)sin(y)+sin(x)cos(y)}}[/tex]

Applying sum and difference formulas [tex][cos(x-y)=cos(x)cos(y)-sin(x)sin(y)][sin(x+y)=sin(x)cos(y)+sin(y)cos(x)][/tex]

[tex]=\frac{cos(x-y)}{sin(x+y)}[/tex]

Left side

[tex]\frac{cos(x-y)}{sin(x+y)}[/tex]

∵ [tex]Left\ side = Right\ side[/tex], hence the identity is verified.

ACCESS MORE