Respuesta :

Answer:

The equation of line with slope  [tex]\frac{5}{4}[/tex]  and points  ( - 1 , 3 ) is y =  [tex]\frac{5}{4}[/tex] x +  [tex]\frac{17}{4}[/tex]

Step-by-step explanation:

Given equation of a line as :

y = [tex]\frac{5}{4}[/tex] x + 3

The line equation is in the form of y = m x + c

Where m is the slope of the line

Now while comparing given line equation with standard line equation ,

So , slope of the line m = [tex]\frac{5}{4}[/tex]

∵ Another line is passing through points ( - 1 , 3 ) , and is parallel to given line

Now if two lines are parallel then slope of both lines are equal

Let The slope of another line = M

So, M = m = [tex]\frac{5}{4}[/tex]

∴ The equation of line with slope [tex]\frac{5}{4}[/tex]  and passing through points ( - 1 , 3 ) is

y - [tex]y_1[/tex] = M × ( x -  [tex]x_1[/tex] )

Or, y - 3 =  × [tex]\frac{5}{4}[/tex]  ( x + 1 )

or,  4 × (  y - 3 ) =  5 ×   ( x + 1 )

Or,  4 y - 12 = 5 x + 5

Or,  4 y = 5 x + 17

∴   y =  [tex]\frac{5}{4}[/tex] x +  [tex]\frac{17}{4}[/tex]  

Hence The equation of line with slope  [tex]\frac{5}{4}[/tex]  and points      ( - 1 , 3 ) is y =  [tex]\frac{5}{4}[/tex] x +  [tex]\frac{17}{4}[/tex]   Answer

ACCESS MORE