Answer: y = [tex]\frac{x}{2}[/tex] + 2.5
Step-by-step explanation:
The formula for finding the equation is given as :
[tex]\frac{y-y_{1} }{x-x_{1} }[/tex] = [tex]\frac{y_{2}-y_{1} }{x_{2}- x_{1} }[/tex]
From the points given:
[tex]x_{1}[/tex] = 7
[tex]x_{2}[/tex] =-1
[tex]y_{1}[/tex] = 6
[tex]y_{2}[/tex] = 2
Substituting into the formula , we have:
[tex]\frac{y-6}{x-7}[/tex] = [tex]\frac{2-6}{-1-7}[/tex]
[tex]\frac{y-6}{x-7}[/tex] = [tex]\frac{-4}{-8}[/tex]
[tex]\frac{y-6}{x-7}[/tex] = [tex]\frac{1}{2}[/tex]
2(y-6) = x -7
2y - 12 = x -7
2y = x - 7 + 12
2y = x + 5
y = [tex]\frac{x}{2}[/tex] + [tex]\frac{5}{2}[/tex]
y = [tex]\frac{x}{2}[/tex] + 2.5