Answer:
The answer to your question is Area = 62.5 u²
Step-by-step explanation:
Area = [tex]c \frac{a + b}{2}[/tex]
a and b are bases
c = heigth
dAD = [tex]\sqrt{(x2 - x1)^{2} - (y2 - y1)^{2} }[/tex]
dAD = [tex]\sqrt{(-1 + 13)^{2} - (5 + 11)^{2} }[/tex]
dAD = [tex]\sqrt{(12)^{2} - (16)^{2} }[/tex]
dAD = [tex]\sqrt{144 + 256}[/tex]
dAD = [tex]\sqrt{400}[/tex]
dAD = 20 u
dBC = [tex]\sqrt{(3 - 0)^{2} - (2 + 2)^{2} }[/tex]
dBC = [tex]\sqrt{9 + 16}[/tex]
dBC = [tex]\sqrt{25}[/tex]
dBC = 5 u
dAB = [tex]\sqrt{(3 + 1)^{2} - (2 - 5)^{2} }[/tex]
dAB = [tex]\sqrt{(4)^{2} - (-3)^{2} }[/tex]
dAB = [tex]\sqrt{16 + 9}[/tex]
dAB = [tex]\sqrt{25}[/tex]
dAB = 5u
Area = [tex]5 \frac{20 + 5}{2}[/tex]
Area = [tex]5 \frac{25}{2}[/tex]
Area = 5(12.5)
Area = 62.5 u²