In ΔABC, m∠CAB = 30°, M is the midpoint of
AB so that AB = 2·MC. Find the angles of the triangle. Find AB if BC = 7 ft. (preferably with a picture)

Respuesta :

Answer:

The angles of the ΔABC are:

[tex]m\angle A=30, m\angle B=60, m\angle C=90[/tex]

AB= 14 ft

Step-by-step explanation:

Given:

A triangle ABC, with [tex]m\angle A=30[/tex]°

AB = 2MC

M is the mid-point of AB.

Let AB = [tex]2x[/tex]

Therefore, AM = MB = [tex]\frac{AB}{2}=x[/tex]

Also, MC = [tex]\frac{AB}{2}=x[/tex]

∴ AM = MB = MC = [tex]x[/tex]

Now, consider triangle AMC,

∵ AM = MC

∴ [tex]m\angle MAC = \m\angle MCA = 30[/tex]°    ( [tex]m\angle A=m\angle MAC[/tex])

Now, exterior angle BMC is given as the sum of opposite interior angles of triangle AMC.

[tex]m\angle BMC=m\angle MAC+m\angle MCA\\m\angle BMC=30+30=60[/tex]

Consider triangle BMC,

∵ MB = MC

∴ [tex]m\angle MBC = m\angle MCB = a(Let)[/tex]

The sum of all interior angles is equal to 180°.

[tex]m\angle BMC+m\angle MBC+m\angle MCB=180\\60+a+a=180\\2a=180-60\\2a=120\\a=\frac{120}{2}=60[/tex]

Therefore, [tex]m\angle B =a = 60[/tex]°

Also, [tex]m\angle C=m\angle MCA+m\angle MCB = 30+60=90[/tex]°

Therefore, the triangle ABC is a special right angled triangle with measures 30° - 60° - 90°.

For a special right angled triangle 30° - 60° - 90°, the hypotenuse is twice the base.

Here, AB is the hypotenuse and BC is the base. So,

[tex]AB=2BC\\AB=2\times 7=14\ ft[/tex]

Therefore, AB = 14 ft.

Ver imagen DarcySea
ACCESS MORE