Respuesta :

Answer:

Distance between point [tex](3,4)[/tex] and midpoint of line joining [tex](8,10)[/tex] and [tex](4,6)[/tex] = [tex]5[/tex] units.

Step-by-step explanation:

Given:

Points:

[tex]A(3,4)\\B(8,10)\\C(4,6)[/tex]

To find distance from point A to midpoint of  BC.

Midpoint M of BC:

[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})\\[/tex]

[tex]M=(\frac{8+4}{2},\frac{10+6}{2})\\[/tex]     [Plugging in points [tex]B(8,10)\ and\ C(4,6)[/tex]]

[tex]M=(\frac{12}{2},\frac{16}{2})\\[/tex]

[tex]M=(6,8)\\[/tex]

Distance between A and M:

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\[/tex]

[tex]D=\sqrt{(6-3)^2+(8-4)^2} \\[/tex]   [Plugging in points [tex]A(3,4)\ and\ M(6,8)[/tex]]

[tex]D=\sqrt{(3)^2+(4)^2} \\[/tex]

[tex]D=\sqrt{9+16} \\[/tex]

[tex]D=\sqrt{25} \\[/tex]

[tex]D=\pm5[/tex]

Since distance is always positive ∴ [tex]D= 5[/tex] units

ACCESS MORE