Find the absolute maximum value for the function f(x) = x^2 − 4, on the interval [–3, 0) U (0, 2].

Answer:
5
Step-by-step explanation:
The function [tex]y=x^2 -4[/tex] is
(see attached diagram for details).
The maximum value of the function is at endpoints -3 or 2. find y(-3) and y(2):
[tex]y(-3)=(-3)^2-4=9-4=5\\ \\y(2)=4^2-4=0[/tex]
So, the maximum value is 5.