Respuesta :
Answer:
The height of tree ≈ 13.8 m.
Step-by-step explanation:
The rest of the question is as shown in the attached figure.
As shown:
In ΔABT :Exterior angle at B = ∠A + ∠ATB
∠ATB = 32° - 19° = 13°
Using the sine law:
[tex]\frac{AB}{sinT} =\frac{BT}{sinA} \\BT = \frac{AB}{SinT} *sinA = \frac{18}{sin13} *sin19[/tex]
In ΔOBT :
Sin 32 = opposite/hypotenuse = h/BT
h = BT * sin 32
Substitute with the value of BT
h = 18 * sin 19* sin 32 / sin 13= 13.8 m
So, The height of tree ≈ 13.8 m.

The height of the tree is 13.8m and this can be determined by using the trigonometric function and sine law.
Given :
- From A Mike can see the angle of elevation is 19°.
- From B, 18m closer, the angle of elevation is [tex]32^\circ[/tex].
The following calculation can be used to determine the height of a tree.
In triangle ATB the exterior angle at B = [tex]\rm \angle A + \angle ATB[/tex]
[tex]\rm \angle ATB = 32^\circ-19^\circ=13^\circ[/tex]
Applying sine law:
[tex]\rm \dfrac{AB}{sin T}=\dfrac{BT}{sin A}[/tex]
[tex]\rm BT = \dfrac{sin A }{sin T}\times AB[/tex]
[tex]\rm BT = \dfrac{sin19}{sin13}\times 18[/tex]
Now, the value of sin32 is:
[tex]\rm sin32 = \dfrac{Height}{BT}[/tex]
[tex]\rm \dfrac{sin 32 \times sin 19\times 18}{sin13} = h[/tex]
Height = 13.8m
For more information, refer to the link given below:
https://brainly.com/question/17289163