Answer:
The equation of the parabola is: [tex]y=3x^2-x+5[/tex]
Step-by-step explanation:
The standard form of a parabola is given as:
[tex] y=ax^2+bx+c[/tex]
The three points on the parabola are (0,5), (1,7), and (-2,19).
Plug in the three points and find three equations in a,b and c
Using point (0,5) in the equation, we get
[tex] a(0)^2+b(0)+c=5\\c=5[/tex]
Using point (1,7) in the equation, we get
[tex] a(1)^2+b(1)+c=7\\a+b+c=7[/tex]
Using point (-2,19) in the equation, we get
[tex] a(-2)^2+b(-2)+c=19\\4a-2b+c=19[/tex]
Plug in the value of c=5 in the last two equations. This gives,
[tex]a+b+5=7\\a+b=7-5\\a+b=2----- 4\\\\4a-2b+5=19\\4a-2b=19-5\\4a-2b=14\\2(2a-b)=14\\2a-b=7[/tex]
Now, add the two new equations. This gives,
[tex]a+b+2a-b=2+7\\ 3a=9\\a=\frac{9}{3}=3[/tex]
Now, plug in [tex]a=3[/tex] in equation 4 gives,
[tex]3+b=2\\b=2-3=-1[/tex]
Therefore, the equation of the parabola is:
[tex]y=3x^2-x+5[/tex]