Answer:
The magnitude of Keith’s push is 230 N
Explanation:
Given:
Mass of chuck, [tex]m=100[/tex] kg
Acceleration of the chuck, [tex]a=2[/tex] m/s².
Coefficient of friction, [tex]\mu =0.5[/tex]
Frictional force acts to left as motion is to right.
Frictional force is given as:
[tex]Friction=\mu N=\mu mg=0.5\times 100\times 9.8=490\textrm{ N}[/tex]
[tex]N = mg[/tex] as net force in vertical direction is zero.
Total force to the right, [tex]F_r=2f+2f=4f[/tex]
Total force to the left, [tex]F_l=f+490[/tex]
Net force acting on the chuck, [tex]F_{net}=F_r-F_l=4f-f-490=3f-490[/tex]
According to Newton's second law,
[tex]F_{net}=ma\\3f-490=100\times 2\\3f=200+490\\3f=690\\f=\frac{690}{3}=230\textrm{ N}[/tex]
Keith applies a force of [tex]f[/tex] towards left.
Therefore, the magnitude of Keith’s push is 230 N.