Answer:
[tex]\alpha =\frac{m*g*R}{I-m*R^2}[/tex]
[tex]a = \frac{m*g*R^2}{I-m*R^2}[/tex]
[tex]T=\frac{I*m*g}{I-m*R^2}[/tex]
Explanation:
By analyzing the torque on the wheel we get:
[tex]T*R=I*\alpha[/tex] Solving for T: [tex]T=I/R*\alpha[/tex]
On the object:
[tex]T-m*g = -m*a[/tex] Replacing our previous value for T:
[tex]I/R*\alpha-m*g = -m*a[/tex]
The relation between angular and linear acceleration is:
[tex]a=\alpha*R[/tex]
So,
[tex]I/R*\alpha-m*g = -m*\alpha*R[/tex]
Solving for α:
[tex]\alpha =\frac{R*m*g}{I+m*R^2}[/tex]
The linear acceleration will be:
[tex]a =\frac{R^2*m*g}{I+m*R^2} [/tex]
And finally, the tension will be:
[tex]T =\frac{I*m*g}{I+m*R^2} [/tex]
These are the values of all the variables: α, a, T