Answer:
The values of P are -87 or 86.
Step-by-step explanation:
Given:
[tex]3741=\frac{P(P-1)}{2}[/tex]
Multiply by 2 on both the sides. This gives,
[tex]3741\times 2=\frac{P(P-1)}{2}\times 2\\7482=P(P-1)[/tex]
Now, use distribution property.
[tex]7482=P\times P - P\times 1\7482=P^2-P[/tex]
Now, add -7482 on both sides,
[tex]P^2-P-7482=0[/tex]
This is a quadratic equation of the form [tex]ax^2+bx+c=0[/tex] which can be solved using quadratic formula with [tex]a=1,b=-1,c=-7482[/tex]
[tex]P=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\\P=\frac{-1\pm\sqrt{(-1)^2-4(1)(-7482)}}{2(1)}\\P=\frac{-1\pm\sqrt{1+29928}}{2}\\P=\frac{-1\pm\sqrt{29929}}{2}\\P=\frac{-1-173}{2}\textrm{ or }P=\frac{-1+173}{2}\\P=\frac{-174}{2}\textrm{ or }P=\frac{172}{2}\\P=-87\textrm{ or }P=86[/tex]
Therefore, the values of P are -87 or 86