Answer:
The monthly cost for 45 minutes is $18.42
Step-by-step explanation:
Let
x -----> the total calling time in minutes
y ----> the monthly cost in dollars
we have the ordered pairs
(42,18.15) and (90,22.47)
step 1
Find the slope
The formula to calculate the slope between two points is equal to
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
substitute the values
[tex]m=\frac{22.47-18.15}{90-42}[/tex]
[tex]m=\frac{4.32}{48}[/tex]
[tex]m=\$0.09\ per\ minute[/tex]
step 2
Find the linear equation in point slope form
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=0.09\\(x1,y1)=(42,18.15)[/tex]
substitute
[tex]y-18.15=0.09(x-42)[/tex]
step 3
Find the monthly cost for 45 minutes of calls
For x=45 min
substitute the value of x in the linear equation and solve for y
[tex]y-18.15=0.09(45-42)[/tex]
[tex]y-18.15=0.09(3)[/tex]
[tex]y-18.15=0.27[/tex]
[tex]y=0.27+18.15[/tex]
[tex]y=18.42[/tex]
therefore
The monthly cost for 45 minutes is $18.42