Respuesta :

F=72

g=6

------------

[tex]\cos { \left( F \right) } =\frac { { e }^{ 2 }+{ g }^{ 2 }-{ f }^{ 2 } }{ 2eg } [/tex]

Therefore:

[tex]\cos { \left( 72 \right) } =\frac { { e }^{ 2 }+{ 6 }^{ 2 }-{ f }^{ 2 } }{ 2\cdot e\cdot 6 } \\ \\ \cos { \left( 72 \right) } =\frac { { e }^{ 2 }+36-{ f }^{ 2 } }{ 12e }[/tex]

[tex]\\ \\ 12e\cdot \cos { \left( 72 \right) } ={ e }^{ 2 }+36-{ f }^{ 2 }\\ \\ \therefore \quad { f }^{ 2 }={ e }^{ 2 }-12e\cdot \cos { \left( 72 \right) } +36\\ \\ \therefore \quad f=\sqrt { { e }^{ 2 }-12e\cdot \cos { \left( 72 \right) +36 } } \\ \\ \therefore \quad f=\sqrt { e\left( e-12\cos { \left( 72 \right) } \right) +36 } [/tex]

But what is e?

E=76

G=32

g=6

And:

[tex]\frac { e }{ \sin { \left( E \right) } } =\frac { g }{ \sin { \left( G \right) } } [/tex]

Which means that:

[tex]\frac { e }{ \sin { \left( 76 \right) } } =\frac { 6 }{ \sin { \left( 32 \right) } } \\ \\ \therefore \quad e=\frac { 6\cdot \sin { \left( 76 \right) } }{ \sin { \left( 32 \right) } } [/tex]

If you take this value into account, you will discover that f is...

[tex]f=\sqrt { \frac { 6\cdot \sin { \left( 76 \right) } }{ \sin { \left( 32 \right) } } \left( \frac { 6\cdot \sin { \left( 76 \right) } }{ \sin { \left( 32 \right) } } -12\cos { \left( 72 \right) } \right) +36 } \\ \\ \therefore \quad f=10.8\quad \left( 1\quad d.p \right) [/tex]

So I would have to say that the answer is approximately (c).