Respuesta :
Solution-
As the question is not complete so contemplating all the possible scenarios,
1st - z² + 10z + 25
2nd - z² - 10z + 25
For,
[tex]z^2 + 10z + 25 = (z)^2+2.z.5+(5)^2 = (z+5)^2=(z+5)(z+5)[/tex]
And for,
[tex]z^2 - 10z + 25 = (z)^2-2.z.5+(5)^2 = (z-5)^2=(z-5)(z-5)[/tex]
So, the factored form of the polynomials are,
[tex](z+5)(z+5) \ and \ (z-5)(z-5)[/tex]
The factors of the equation z² - 10z + 25 are (z − 5)(z − 5).
Given Equation;
z² - 10z + 25
What are the factors?
Splitting the middle term Using formula Using Quadratic formula Using algebraic identities.
The factors of the equation are;
z² - 10z + 25
z² -5z -5z + 25
z(z − 5) - 5(z − 5)
(z − 5)(z − 5)
Hence, the factors of the equation z² - 10z + 25 are (z − 5)(z − 5).
To know more about factors click the link given below.
brainly.com/question/19405324
#SPJ5