Respuesta :

[tex]3 x^{2} + 12x = 3[/tex]
[tex]3 x^{2} + 12x - 3 = 0[/tex]
Using the quadratic formula
[tex]x = \frac{-b (+ or -) \sqrt{b^{2 - 4ac} } }{2a} [/tex]
[tex]x = \frac{-12 + \sqrt{12^{2 - 4(3)(-3)} } }{2(3)} [/tex]   OR   [tex]x = \frac{-12 - \sqrt{12^{2 - 4(3)(-3)} } }{2(3)}[/tex]
[tex]x = \frac{-12 + \sqrt{180} }{6} [/tex]   OR   [tex]x = \frac{-12 - \sqrt{180} }{6}[/tex]
∴ x = 0.236  and  x = -4.236 

Answer:

The solutions to the quadratic equation are: [tex]x=-2+\sqrt{5},\:x=-2-\sqrt{5}[/tex]

Step-by-step explanation:

To solve the quadratic equation [tex]3x^2+12x=3[/tex] you must:

Subtract 3 from both sides and simplify

[tex]3x^2+12x-3=3-3\\\\3x^2+12x-3=0[/tex]

For a quadratic equation of the form [tex]ax^2+bx+c=0[/tex] the solutions are

[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]\mathrm{For\:}\quad a=3,\:b=12,\:c=-3[/tex]

[tex]x=\frac{-12+\sqrt{12^2-4\cdot \:3\left(-3\right)}}{2\cdot \:3}=\frac{-12+\sqrt{180}}{2\cdot \:3}=\frac{-12+6\sqrt{5}}{6}=\frac{6\left(-2+\sqrt{5}\right)}{6}=-2+\sqrt{5}[/tex]

[tex]x=\frac{-12-\sqrt{12^2-4\cdot \:3\left(-3\right)}}{2\cdot \:3}=\frac{-12-\sqrt{180}}{2\cdot \:3}=\frac{-12-6\sqrt{5}}{6}=-\frac{6\left(2+\sqrt{5}\right)}{6}=-2-\sqrt{5}[/tex]

The solutions to the quadratic equation are:

[tex]x=-2+\sqrt{5},\:x=-2-\sqrt{5}[/tex]