Answer:
46.22 cm
Explanation:
The focal refraction, fr is given by
[tex]fr = \frac {c}{(1.572 -1)} = \frac {c}{0 .572}[/tex]
The focal red light is given by
[tex]fv = \frac {c}{(1.605 - 1)} = \frac {c}{0.605}[/tex]
[tex]\frac {fv}{fr} = \frac {0.572}{0 .605} = 0.945455[/tex]
[tex]\frac {1}{fr} = \frac{1}{image} + \frac {1}{object}[/tex] and making fr the subject we obtain
[tex]fr = \frac {image * object}{(image + object)} = \frac {24.00 * 55} {(24.0 + 55)} = 16.70886 cm[/tex]
fv = 0.945455* 16.70886 cm = 15.79747 cm
[tex]image = \frac {object * f} {(object - f)} = \frac {15.79747 * 24.0}{(24.0 - 15.79747)} = 46.22222 cm[/tex]
Therefore, violet image is approximately 46.22 cm