Respuesta :
Answer:
[tex]4a^{2} + b^{2} - c^{2} + 4ab[/tex] [tex]= (2a + b -c) (2a + b+c)[/tex]
Step-by-step explanation:
Here, the given expression is [tex]4a^{2} + b^{2} - c^{2} + 4ab[/tex]
or, the given expression can be written as
[tex](4a^{2} + b^{2} + 4ab ) - c^{2}[/tex]
Now, by ALGEBRAIC IDENTITY: [tex](x+y)^{2} = x^{2} + y^{2} + 2xy[/tex]
So, similarly here, [tex](2a +b){2} = 4a^{2} + b^{2} + 4ab[/tex]
Hence, on simplification, the expression
[tex](4a^{2} + b^{2} + 4ab ) - c^{2} = (2a + b)^{2} - c^{2}[/tex]
Now, by ALGEBRAIC IDENTITY: [tex](x +y)(x-y) = x^{2} - y^{2}[/tex]
So, similarly [tex](2a + b)^{2} - c^{2}[/tex][tex]= (2a + b -c) (2a + b+c)[/tex]
Hence, the given expression is factorized as:
[tex]4a^{2} + b^{2} - c^{2} + 4ab[/tex] [tex]= (2a + b -c) (2a + b+c)[/tex]
The answer above has the correct explanation but a calculation mistake. Up to the part where it simplifies to [tex](2a-b)^{2} - c^{2}[/tex], everything is right.
Using the formula (a+b) (a-b), we get (2a-b-c)(2a-b+c). Not (2a+b-c) (2a+b+c)
So, the correct answer should be: (2a - b + c) (2a - b - c)