Respuesta :

The sequence is converges and the limit is [tex]\lim_{n \to \infty} S_n=51\frac{3}{7}[/tex]

Step-by-step explanation:

In the geometric sequence

  • The sequence is converges if IrI < 1, where r is the constant ratio between each two consecutive terms
  • The sequence is diverges if IrI > 1

IrI < 1 means → -1 < r < 1

IrI > 1 means → r < -1 and r > 1

∵ The sequence is 60 , -10 , [tex]\frac{5}{3}[/tex] , [tex]-\frac{5}{18}[/tex] , .....

∵ [tex]r=\frac{a_{2}}{a_{1}}[/tex] , where [tex]a_{1}[/tex] is the first term and

  [tex]a_{2}[/tex] is the second term

∵ [tex]a_{1}[/tex] = 60

∵ [tex]a_{2}[/tex] = -10

∴ [tex]r=\frac{-10}{60}[/tex] = [tex]\frac{-1}{6}[/tex]

∴ The constant ratio is [tex]\frac{-1}{6}[/tex]

∵ -1 < [tex]\frac{-1}{6}[/tex] < 1

∴ I [tex]\frac{-1}{6}[/tex] I < 1

∴ The sequence is converges

∵ The limit is the sum to infinity

∵ [tex]\lim_{n \to \infty} S_n=\frac{a_{1}}{1-r}[/tex]

∵ a = 60 and r = [tex]\frac{-1}{6}[/tex]

- Substitute these values in the rule above

∴ [tex]\lim_{n \to \infty} S_n=\frac{60}{1-(\frac{-1}{6})}[/tex]

∴ [tex]\lim_{n \to \infty} S_n=51\frac{3}{7}[/tex]

The sequence is converges and the limit is [tex]\lim_{n \to \infty} S_n=51\frac{3}{7}[/tex]

Learn more:

You can learn more about sequences in brainly.com/question/7221312

#LearnwithBrainly