Answer:
Step-by-step explanation:
[tex]-1(x+5)=3[x+2x-1)]\\\\\text{for}\ -1(x+5):\ \text{distribtutive property}\\\text{for}\ [x+(2x-1)]:\ \text{associative property}\\\\(-1)(x)+(-1)(5)=3[(x+2x)-1]\\-x-5=3(3x-1)\\\\\text{for}\ 3(3x-1):\ \text{distributive property}\\\\-x-5=(3)(3x)+(3)(-1)\\-x-5=9x-3\\\\\text{for the equation}:\ \text{addition property of equality}\\\\-x-5=9x-3\qquad\text{add 5 to both sides}\\-x-5+5=9x-3+5\\-x=9x+2\\\\\text{for the equation:}\ \text{subtraction property of equality}\\\\-x=9x+2\qquad\text{subtract}\ 9x\ \text{from both sides}[/tex]
[tex]-x-9x=9x-9x+2\\-10x=2\\\\\text{for the equation:}\ \text{division property of equality}\\\\-10x=2\qquad\text{divide both sides by -10}\\\dfrac{-10x}{-10}=\dfrac{2}{-10}\\x=-0.2[/tex]
[tex]\text{Distributive property:}\ a(b+c)=ab+ac\\\text{Associative property:}\ (a+b)+c=a+(b+c)[/tex]