The quadratic equation with roots 1/α and 1/β is [tex]6 x^{2}+5 x-2=0[/tex]
Solution:
Given, roots of equation [tex]2 x^{2}-5 x-6=0 \text { are } \alpha, \beta[/tex]
We have to find equation whose roots are 1/α, and 1/β.
We know that,
[tex]\text { sum of roots }=\frac{-x \text { cosficient }}{x^{2} \text { coefficient }} \rightarrow \alpha+\beta=\frac{-(-5)}{2} \rightarrow \alpha+\beta=\frac{5}{2}[/tex]
[tex]\text { And, product of roots }=\frac{c o n s t a n t}{x^{2} c o e f f i c i e n t} \rightarrow \alpha \beta=\frac{-6}{2} \rightarrow \alpha \beta=-3[/tex]
Now, we know that, general form of an equation is
[tex]x^{2}-(\text { sum of roots }) x+\text { product of roots }=0[/tex]
Then, equation whose roots 1/α and 1/β is
[tex]\begin{array}{l}{x^{2}-\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) x+\frac{1}{\alpha} \times \frac{1}{\beta}=0} \\\\ {\rightarrow x^{2}-\left(\frac{\alpha+\beta}{\alpha \beta}\right) x+\frac{1}{\alpha \beta}=0}\end{array}[/tex]
from above given equation,
[tex]\begin{array}{l}{\rightarrow x^{2}-\left(\frac{\frac{5}{2}}{-3}\right) x+\frac{1}{-3}=0} \\\\ {\text { multiplying equation with }-3} \\\\ {\rightarrow-3 x^{2}-\frac{5}{2} x+1=0} \\\\ {\text { multiplying equation with } 2} \\\\ {\rightarrow-6 x^{2}-5 x+2=0} \\\\ {\rightarrow-6 x^{2}-5 x+2=0} \\\\ {\text { multiplying equation with }-1} \\\\ {\rightarrow 6 x^{2}+5 x-2=0} \\\\ {\text { Hence, the required line equation is } 6 x^{2}+5 x-2=0}\end{array}[/tex]