Answer:
C. (2,1)
Step-by-step explanation:
Shortest leg in triangle ABC is leg AB, shortest leg in triangle A'B'C' is leg A'B'.
Find distances AB and A'B':
[tex]AB=\sqrt{(-2-(-8))^2+(8-10)^2}=\sqrt{36+4}=\sqrt{40}=2\sqrt{10}\\ \\A'B'=\sqrt{(4-1)^2+(8-9)^2}=\sqrt{9+1}=\sqrt{10}[/tex]
So, the coefficient of similarity is [tex]\frac{1}{2}[/tex] (triangle A'B'C' is [tex]\frac{1}{2}[/tex] of triangle ABC).
If we go from point B to point C 14 units down and 4 units left, then we go from point B' to point C' 7 units down and 2 units left.
If point B' has coordinates (4,8), then point C' has coordinates (4-2,8-7) that is (2,1).