Respuesta :

Answer:

Thus , The length of each side of the given equilateral triangle is 8

Ver imagen wanda12345678

Answer:

8 cm

Step-by-step explanation:

An equilateral triangle has 3 sides all being congruent to each other.

If I draw a line segment from one vertex to the opposite side at it's midpoint, I would have halved the triangle into two right triangles.

Let's each side of this equilateral triangle have measurement, [tex]a[/tex].

Let [tex]h[/tex] be the height of the triangle:

[tex](\frac{a}{2})^2+h^2=a^2[/tex]

Let's solve for h in terms of [tex]a[/tex].

[tex]\frac{a^2}{4}+h^2=a^2[/tex]

Subtract [tex]\frac{a^2}{4}[/tex] on both sides:

[tex]h^2=a^2-\frac{a^2}{4}[/tex]

[tex]h^2=\frac{4}{4}a^2-\frac{1}{4}a^2[/tex]

[tex]h^2=\frac{4-1}{4}a^2[/tex]

[tex]h^2=\frac{3}{4}a^2[/tex]

Now square root both sides:

[tex]h=\frac{\sqrt{3}}{2}a[/tex]

So the area of the triangle is [tex]\frac{1}{2} \cdot a \cdot \frac{\sqrt{3}}{2}a[/tex].

Let's simplify that a bit: [tex]\frac{\sqrt{3}}{4}a^2[/tex].

We are also given a numerical value for the area, [tex]16\sqrt{3}[/tex].

So this will give us the equation [tex]\frac{\sqrt{3}}{4}a^2=16\sqrt{3}[/tex] so that we can solve for [tex]a[/tex].

Multiply both sides by [tex]\frac{4}{\sqrt{3}}[/tex]:

[tex]a^2=16 \sqrt{3} \cdot \frac{4}{\sqrt{3}}[/tex]

Simplify the right hand side:

[tex]a^2=16 \cdot 4[/tex]

[tex]a^2=64[/tex]

Take the square root of both sides:

[tex]a=\sqrt{64}[/tex]

[tex]a=8[/tex]

Ver imagen freckledspots