The angular acceleration of a pulley is described under the equation,
[tex]\theta = (0.5) \alpha t^2[/tex]
So things clearing,
[tex]\alpha = \frac{ 2\theta}{t^2}[/tex]
b) For point B it is necessary to make a sum of Forces,
[tex]\sum F=0[/tex]
In this way,
[tex]Mg - T_1 = Ma[/tex]
[tex]T_1 = Mg - Ma[/tex] (1)
For block 2, we have the following relationship,
[tex]T_2 = Ma[/tex] (2)
So,
[tex]T_1 - T_2 = I \frac{a}{R}[/tex] (3)
Substituting (1) and (2) in (3)
[tex]Mg - Ma - Ma = I \frac{a}{R}[/tex]
So,
[tex]a = \frac{2\theta R}{t^2}[/tex]
**Note that [tex]\alpha R = a[/tex]
c) For this point we need to use (1)
[tex]T1 = Mg - Ma = Mg - \frac{M^2\theta R}{t^2}[/tex]
using (2)
[tex]RT_2=RT_1-I\alpha[/tex]
[tex]T_2= \frac{RM(g-\frac{2\theta R}{t^2})-I\frac{2\theta}{t^2}}{R}[/tex]
[tex]T_2=\frac{RMgt^2-2R^2M\theta-2t\theta}{Rt^2}[/tex]