Respuesta :
Answer:
a. Dew point: 48.7°C. Degrees of superheat 26.3°C
b. [tex]3.33mol/m^3[/tex]
c. [tex]P=3.34atm[/tex]
Explanation:
a. Based on the psychometric chart of air, the specific volume of air at the given conditions is:
[tex]v =\frac{RT}{PM} =\frac{0.082\frac{atm*L}{mol*K}*348.15K}{1atm*28.97g/mol} *\frac{1m^3}{1000L}*\frac{1000g}{1kg} =0.98544m^3/kg[/tex]
The dew point at the specific volume and the 30%-humidity has a value of 48.7°C, it means that there are 75°C-48.7°C=26.3°C of superheat.
b. At 75°C the molar fraction of water is 11580Pa/101625Pa=0.114 moles per cubic meter of feed gas are:
[tex]\frac{n}{V}=y_{H_2O}\frac{P}{RT}=0.114\frac{1atm}{0.082\frac{atm*L}{mol*K}*348.15K} }*\frac{1000L}{1m^3} \\\frac{n}{V}=4mol/m^3[/tex]
Once the 35°C are reached, the mole fraction of water is 1688Pa/101325Pa=0.017 and remaining moles per cubic meter of feed gas are:
[tex]\frac{n}{V}=y_{H_2O}\frac{P}{RT}=0.017\frac{1atm}{0.082\frac{atm*L}{mol*K}*308.15K} }*\frac{1000L}{1m^3} \\\frac{n}{V}=0.673mol/m^3[/tex]
So the condensed moles per cubic meter of feed gas are:
[tex]4mol/m^3-0.673mol/m^3=3.33mol/m^3[/tex]
c. Considering the Raoult's law, one computes the pressure as follows:
[tex]P=\frac{P^{sat}_{H_2O}}{y_{H_2O}}[/tex]
At 75°C and 30%-humidity, the saturation water vapor pressure has a value of 38599Pa, thus:
[tex]P=\frac{38599Pa}{0.114}*\frac{1atm}{101325Pa} \\P=3.34atm[/tex]
Best regards.