Respuesta :

Answer:

The coordinates of the point S =  (12, -22)

Step-by-step explanation:

The coordinate points of T = (0,6)

Mid point of ST = (6,-8)

Let the coordinates of S = (a,b)

Now, BY MID POINT FORMULA:

If (x, y) and (z, w) are the line point joining line segment and (p,q) is the coordinate of mid point. Then

[tex](p, q)  = (\frac{x  + z}{2}  , \frac{y + w}{2} )[/tex]

So, here similarly, [tex](6, -8)  = (\frac{(0+a)}{2}  , \frac{6+ b}{2} )[/tex]

⇒ [tex]6   = \frac{0+a}{2}  , -8 =  \frac{6+ b}{2}[/tex]

⇒ a =2 x 6 = 12, b = 2 (-8) -6 = -22

(a,b) = (12, -22)

Hence, the coordinates of the point S =  (12, -22)