Answer:
The coordinates of the point S = (12, -22)
Step-by-step explanation:
The coordinate points of T = (0,6)
Mid point of ST = (6,-8)
Let the coordinates of S = (a,b)
Now, BY MID POINT FORMULA:
If (x, y) and (z, w) are the line point joining line segment and (p,q) is the coordinate of mid point. Then
[tex](p, q) = (\frac{x + z}{2} , \frac{y + w}{2} )[/tex]
So, here similarly, [tex](6, -8) = (\frac{(0+a)}{2} , \frac{6+ b}{2} )[/tex]
⇒ [tex]6 = \frac{0+a}{2} , -8 = \frac{6+ b}{2}[/tex]
⇒ a =2 x 6 = 12, b = 2 (-8) -6 = -22
⇒(a,b) = (12, -22)
Hence, the coordinates of the point S = (12, -22)