Answer:
Total momentum, p = 21.24 kg-m/s
Explanation:
Given that,
Mass of first piece, [tex]m_1=200\ g= 0.2\ kg[/tex]
Mass of the second piece, [tex]m_2=300\ g= 0.3\ kg[/tex]
Speed of the first piece, [tex]v_1=82\ m/s[/tex] (along x axis)
Speed of the second piece, [tex]v_2=45\ m/s[/tex] (along y axis)
To find,
The total momentum of the two pieces.
Solve,
The total momentum of two pieces is equal to the sum of momentum along x axis and along y axis.
[tex]p_x=m_1v_1[/tex]
[tex]p_x=0.2\ kg\times 82\ m/s[/tex]
[tex]p_x=16.4\ kg-m/s[/tex]
[tex]p_y=m_2v_2[/tex]
[tex]p_y=0.3\ kg\times 45\ m/s[/tex]
[tex]p_y=13.5\ kg-m/s[/tex]
The net momentum is given by :
[tex]p=\sqrt{p_x^2+p_y^2}[/tex]
[tex]p=\sqrt{16.4^2+13.5^2}[/tex]
p = 21.24 kg-m/s
Therefore, the total momentum of the two pieces is 21.24 kg-m/s.