Answer:
[tex]\frac{dr}{dt}[/tex]=0.04132 ft/min
Step-by-step explanation:
V = volume of the sphere
r = radius of the sphere
[tex]\frac{dV}{dt}[/tex] = 80π ft³/min
now,
For sphere, V = [tex]\frac{4}{3}\pi r^3[/tex]
for rate of change of volume with respect to time (t)
[tex]\frac{dV}{dt}=\frac{d(\frac{4}{3}\pi r^3)}{dt}[/tex]
or
[tex]\frac{dV}{dt}=3\times\frac{4}{3}\pi r^2\times\frac{dr}{dt}[/tex]
or
[tex]\frac{dV}{dr}=4\pi r^2\times\frac{dr}{dt}[/tex]
at r = 22ft, [tex]\frac{dV}{dt}[/tex] = 80π ft³/min
80π = [tex]4\pi(22)^2\times\frac{dr}{dt}[/tex]
or
[tex]\frac{dr}{dt}[/tex]=0.04132 ft/min