Answer:
[tex](x-4)^2+(y-4)^2=16[/tex]
Step-by-step explanation:
Let A(a,b) be the center of the circle. This point lies on the liny y = 8 - x.
So,
[tex]b=8-a[/tex]
Let points B and C be tangent points, so
[tex]B(a,0)\\ \\C(0,b)=(0,8-a)[/tex]
Find the radii AB and AC:
[tex]AB=\sqrt{(a-a)^2+(8-a-0)^2}=|8-a|\\ \\AC=\sqrt{(a-0)^2+(8-a-(8-a))^2}=|a|[/tex]
All circle's radii are the same, so
[tex]|8-a|=|a|\\ \\8-a=a\ \text{or}\ 8-a=-a[/tex]
Solve each equation:
[tex]\2a=8\\ \\a=4[/tex]
or
[tex]8=0[/tex]
has no solutions.
Thus, the center of the circle is at point (4,4) and the radius is r = |a| = 4.
Therefore, the equation of the circle is
[tex](x-4)^2+(y-4)^2=4^2\\ \\(x-4)^2+(y-4)^2=16[/tex]